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• Univariate regression problem (one output, real value)
• Fully connected network

Recap: Regression



Recap: 1D Linear regression loss function

Loss function:

“Least squares loss function”



Recap: 1D Linear regression training

This technique is known as gradient descent



Shallow neural networks
● 1D regression model is obviously limited

○ Limited to lines.
○ Only one input, and output

● General linear regression still limited
○ Limited to lines/planes/hyperplanes… only flat surfaces
○ Multiple inputs, only one output
○ At least it has an analytical solution?

● Shallow neural networks 
○ Flexible enough to describe arbitrarily complex input/output mappings
○ Can have as many inputs as we want
○ Can have as many outputs as we want



This lecture we’ll cover…
● Example network, 1 input, 1 output
● Universal approximation theorem
● More than one output
● More than one input
● General case
● Number of regions
● Terminology
● Universal approximation HOWTO



1D Linear Regression vs 0 Hidden vs 1 Hidden

1D Linear Regression

● y = f[x, 𝜙] = 𝜙0 + 𝜙1x

Shallow Neural Network with no hidden layers

● y = f[x, 𝜙] = a[𝜙0 + 𝜙1x] a is an “activation function”

Shallow Neural Network with one hidden layer

● y = f[x, 𝜙] = a0[𝜙0 + 𝜙1 a1[θ10 + θ11x] + 𝜙1 a2[θ20 + θ21x] + 𝜙1 a3[θ30 + θ31x]]

usually skip a0 (identity function) and use a1 = a2 = a3



Example shallow network



Example shallow network
Activation function



If a is the identity function, a[x] = x, then this simplifies to a linear function.

y = (𝜙0 + 𝜙1θ10 + 𝜙1θ20 + 𝜙1θ30) + (𝜙1θ11 + 𝜙1θ21 + 𝜙1θ31) x

So the activation functions are a critical part of neural network capability.

Example shallow network
Activation function



Example shallow network

Rectified Linear Unit
(a very common activation function)

Activation function



Example shallow network

Rectified Linear Unit
(a very common activation function)

Activation function

Inactive
region

Active
region



Example shallow network

Rectified Linear Unit
(a very common activation function)

Activation function

Inactive
region

Active
region

Easy gradients - 
zero or one 
depending on 
activity.



Example shallow network

This model has 10 parameters:

• Represents a family of functions
• Parameters determine a particular function
• Given the parameters, we can perform inference (evaluate the equation)

• Given training dataset 
• Choose loss function             (initially least squares)
• Change parameters to minimize loss function



Example shallow network



Example shallow network

Piecewise linear functions with three joints



Hidden units

Break down into two 
parts:

where:

Hidden units



1. compute three 
linear functions

Linear
Function
s



2. Pass through ReLU 
functions (creates 

hidden units)

Linear
Function
s

After
Activatio
n



3. Weight the hidden 
units

After
Activatio
n

Weight the
Hidden 
units



4. Sum the weighted 
hidden units to create 

output

Weight the
hidden 
units

Sum the weighted 
hidden units



Example shallow network = piecewise linear functions
1 “joint” per ReLU function

Example: 3 different shallow networks



Activation pattern = which hidden units are 
activated

Shaded region:
• Unit 1 active
• Unit 2 inactive
• Unit 3 active



Depicting neural networks

Each parameter multiplies its source and adds to its target



Depicting neural networks
Usually don’t show the bias terms



Shallow neural networks

● Example network, 1 input, 1 output

● Universal approximation theorem

● More than one output

● More than one input

● General case

● Number of regions

● Terminology

● Universal approximation HOWTO



With 3 hidden units:

With D hidden units:



With enough hidden units…

… we can describe any 1D function to arbitrary accuracy



Universal approximation theorem

“a formal proof that, with enough hidden units, a shallow 
neural network can describe any continuous function in        to 
arbitrary precision”

Will circle back to this at the end to show how this works.



Shallow neural networks
● Example network, 1 input, 1 output
● Universal approximation theorem
● More than one output
● More than one input
● General case
● Number of regions
● Terminology
● Universal approximation HOWTO



Two outputs 

● 1 input, 4 hidden units, 2 outputs



Two outputs 

● 1 input, 4 hidden units, 2 outputs



Two outputs 

● 1 input, 4 hidden units, 2 outputs



Shallow neural networks
● Example network, 1 input, 1 output
● Universal approximation theorem
● More than one output
● More than one input
● General case
● Number of regions
● Terminology
● Universal approximation HOWTO



Two inputs

• 2 inputs, 3 hidden units, 1 output



Linear
Function
s



Linear
Function
s

After
Activatio
n



After
Activatio
n

Weight the
Hidden 
units



Weight the
hidden 
units

Sum the weighted 
hidden units



Convex polygonal 
regions

 



Fitting a dataset where:
each sample has 2 inputs and 1 output 



● For the 2D case, what if there were two outputs?

● If this is one of the outputs, what would the other one look like?

Question:



Shallow neural networks
● Example network, 1 input, 1 output
● Universal approximation theorem
● More than one output
● More than one input
● General case
● Number of regions
● Terminology
● Universal approximation HOWTO



Arbitrary inputs, hidden units, outputs

 

• e.g., Three inputs, three hidden units, two outputs



Question:

● How many parameters does this model have?



How many 
hidden units?



Output with boundaries and in 3D



How would you draw and write this neural network?



Inputs

Output

Neurons

“neural network”

How would you draw and write this neural network?

49



Arbitrary inputs, hidden units, outputs

 

• e.g., Three inputs, three hidden units, two outputs



Shallow neural networks
● Example network, 1 input, 1 output
● Universal approximation theorem
● More than one output
● More than one input
● General case
● Number of regions
● Terminology
● Universal approximation HOWTO



Number of output regions
● In general, each output consists of multi-dimensional convex polytopes
● With two inputs, and three hidden units, we saw there were seven 

polygons for each output:

Polytope -- Wikipedia
In elementary geometry, a 
polytope is a geometric object 
with flat sides (faces). Polytopes 
are the generalization of 
three-dimensional polyhedra to 
any number of dimensions. 
Polytopes may exist in any general 
number of dimensions n as an 
n-dimensional polytope or 
n-polytope.

https://en.wikipedia.org/wiki/Polytope


 

1 input (1-dimension) with 1 
hidden unit creates two 

regions (one joint)

2 input (2-dimensions) with 2 
hidden units creates four 

regions (two lines)

3 inputs (3-dimensions) with 3 
hidden units creates eight 

regions (three planes)

 



●  

Number of regions:

Binomial coefficients!
 

 



Number of output regions

● In general, each output consists of D dimensional convex polytopes

● How many?

Highlighted point = 500 hidden units or 51,001 parameters

 



Is More Output Regions Good?

● More output regions ~ more flexibility.
● More output regions ~ more freedom to overfit.

○ But not completely arbitrary freedom to overfit.
○ Still linear within each region.
○ Still consistency between adjacent regions.

● Training details will matter



Shallow neural networks
● Example network, 1 input, 1 output
● Universal approximation theorem
● More than one output
● More than one input
● General case
● Number of regions
● Terminology
● Universal approximation HOWTO



Nomenclature



Nomenclature

 



Other activation functions

Ramachandran, P., 
Zoph, B., & Le, Q. V. 
(2017). Searching for 
activation functions. 
arXiv:1710.05941.

SELU

https://arxiv.org/abs/1710.05941


Other activation functions

Ramachandran, P., 
Zoph, B., & Le, Q. V. 
(2017). Searching for 
activation functions. 
arXiv:1710.05941.

SELU

Sigmoid 
function sig[z] 
is handy for 
limiting output 
range since 
its range is 
[0,1].

https://arxiv.org/abs/1710.05941


Other activation functions

Ramachandran, P., 
Zoph, B., & Le, Q. V. 
(2017). Searching for 
activation functions. 
arXiv:1710.05941.

SELU

But both sig[z] 
and tanh[z] 
suffer from 
low gradients 
~0 for large 
inputs. They 
were the 
defaults 
before RELU.

https://arxiv.org/abs/1710.05941


Other activation functions

Ramachandran, P., 
Zoph, B., & Le, Q. V. 
(2017). Searching for 
activation functions. 
arXiv:1710.05941.

SELU

None of these are polynomials. Polynomial activations restrict output to be polynomials.

https://arxiv.org/abs/1710.05941


We have built a model that can:
• take an arbitrary number of inputs
• output an arbitrary number of outputs
• model a function of arbitrary complexity between the two

Regression



Shallow neural networks
● Example network, 1 input, 1 output
● Universal approximation theorem
● More than one output
● More than one input
● General case
● Number of regions
● Terminology
● Universal approximation HOWTO



Universal Approximation HOWTO



Universal Approximation HOWTO



Universal Approximation HOWTO

Just bias.



Universal Approximation HOWTO

Add a hidden node that 
activates at x=0, setting 
slope to match first 
region.



Universal Approximation HOWTO

Each new hidden node 
activates at the next 
region boundary.



Universal Approximation HOWTO

This process works by 
extending the number 
of regions perfectly 
matched one at a time.



Universal Approximation HOWTO

Regions not matched 
yet are completely 
ignored.



Universal Approximation HOWTO

With 1 input variable, it 
is easy to order the 
regions, and avoid 
impacting the 
previously matched 
regions.



Universal Approximation HOWTO

With 1 input variable, it 
is easy to order the 
regions, and avoid 
impacting the 
previously matched 
regions.



Universal Approximation HOWTO

+ 𝜙i a[x - bi]

where bi is the ith 
region boundary



Universal Approximation HOWTO

This process of 
incrementally matching 
a region while avoiding 
previous matches gets 
much harder with more 
dimensions. But it will 
be easier with deep 
networks.



Universal Approximation HOWTO

BTW we do not 
construct universal 
approximations like this 
in practice. We are 
training from points, not 
fitting curves. And 
training data may 
conflict.



Next Week

● Deep Neural Networks
○ More of the same?
○ But different?
○ And better?



Feedback?


