
Deep Learning for Data Science
DS 542

Lecture 03
Shallow Neural Networks

Slides originally by Thomas Gardos.
Images from Understanding Deep Learning unless otherwise cited.

https://udlbook.com

• Univariate regression problem (one output, real value)
• Fully connected network

Recap: Regression

Recap: 1D Linear regression loss function

Loss function:

“Least squares loss function”

Recap: 1D Linear regression training

This technique is known as gradient descent

Shallow neural networks
● 1D regression model is obviously limited

○ Limited to lines.
○ Only one input, and output

● General linear regression still limited
○ Limited to lines/planes/hyperplanes… only flat surfaces
○ Multiple inputs, only one output
○ At least it has an analytical solution?

● Shallow neural networks
○ Flexible enough to describe arbitrarily complex input/output mappings
○ Can have as many inputs as we want
○ Can have as many outputs as we want

This lecture we’ll cover…
● Example network, 1 input, 1 output
● Universal approximation theorem
● More than one output
● More than one input
● General case
● Number of regions
● Terminology
● Universal approximation HOWTO

1D Linear Regression vs 0 Hidden vs 1 Hidden

1D Linear Regression

● y = f[x, 𝜙] = 𝜙0 + 𝜙1x

Shallow Neural Network with no hidden layers

● y = f[x, 𝜙] = a[𝜙0 + 𝜙1x] a is an “activation function”

Shallow Neural Network with one hidden layer

● y = f[x, 𝜙] = a0[𝜙0 + 𝜙1 a1[θ10 + θ11x] + 𝜙1 a2[θ20 + θ21x] + 𝜙1 a3[θ30 + θ31x]]

usually skip a0 (identity function) and use a1 = a2 = a3

Example shallow network

Example shallow network
Activation function

If a is the identity function, a[x] = x, then this simplifies to a linear function.

y = (𝜙0 + 𝜙1θ10 + 𝜙1θ20 + 𝜙1θ30) + (𝜙1θ11 + 𝜙1θ21 + 𝜙1θ31) x

So the activation functions are a critical part of neural network capability.

Example shallow network
Activation function

Example shallow network

Rectified Linear Unit
(a very common activation function)

Activation function

Example shallow network

Rectified Linear Unit
(a very common activation function)

Activation function

Inactive
region

Active
region

Example shallow network

Rectified Linear Unit
(a very common activation function)

Activation function

Inactive
region

Active
region

Easy gradients -
zero or one
depending on
activity.

Example shallow network

This model has 10 parameters:

• Represents a family of functions
• Parameters determine a particular function
• Given the parameters, we can perform inference (evaluate the equation)

• Given training dataset
• Choose loss function (initially least squares)
• Change parameters to minimize loss function

Example shallow network

Example shallow network

Piecewise linear functions with three joints

Hidden units

Break down into two
parts:

where:

Hidden units

1. compute three
linear functions

Linear
Function
s

2. Pass through ReLU
functions (creates

hidden units)

Linear
Function
s

After
Activatio
n

3. Weight the hidden
units

After
Activatio
n

Weight the
Hidden
units

4. Sum the weighted
hidden units to create

output

Weight the
hidden
units

Sum the weighted
hidden units

Example shallow network = piecewise linear functions
1 “joint” per ReLU function

Example: 3 different shallow networks

Activation pattern = which hidden units are
activated

Shaded region:
• Unit 1 active
• Unit 2 inactive
• Unit 3 active

Depicting neural networks

Each parameter multiplies its source and adds to its target

Depicting neural networks
Usually don’t show the bias terms

Shallow neural networks

● Example network, 1 input, 1 output

● Universal approximation theorem

● More than one output

● More than one input

● General case

● Number of regions

● Terminology

● Universal approximation HOWTO

With 3 hidden units:

With D hidden units:

With enough hidden units…

… we can describe any 1D function to arbitrary accuracy

Universal approximation theorem

“a formal proof that, with enough hidden units, a shallow
neural network can describe any continuous function in to
arbitrary precision”

Will circle back to this at the end to show how this works.

Shallow neural networks
● Example network, 1 input, 1 output
● Universal approximation theorem
● More than one output
● More than one input
● General case
● Number of regions
● Terminology
● Universal approximation HOWTO

Two outputs

● 1 input, 4 hidden units, 2 outputs

Two outputs

● 1 input, 4 hidden units, 2 outputs

Two outputs

● 1 input, 4 hidden units, 2 outputs

Shallow neural networks
● Example network, 1 input, 1 output
● Universal approximation theorem
● More than one output
● More than one input
● General case
● Number of regions
● Terminology
● Universal approximation HOWTO

Two inputs

• 2 inputs, 3 hidden units, 1 output

Linear
Function
s

Linear
Function
s

After
Activatio
n

After
Activatio
n

Weight the
Hidden
units

Weight the
hidden
units

Sum the weighted
hidden units

Convex polygonal
regions

Fitting a dataset where:
each sample has 2 inputs and 1 output

● For the 2D case, what if there were two outputs?

● If this is one of the outputs, what would the other one look like?

Question:

Shallow neural networks
● Example network, 1 input, 1 output
● Universal approximation theorem
● More than one output
● More than one input
● General case
● Number of regions
● Terminology
● Universal approximation HOWTO

Arbitrary inputs, hidden units, outputs

• e.g., Three inputs, three hidden units, two outputs

Question:

● How many parameters does this model have?

How many
hidden units?

Output with boundaries and in 3D

How would you draw and write this neural network?

Inputs

Output

Neurons

“neural network”

How would you draw and write this neural network?

49

Arbitrary inputs, hidden units, outputs

• e.g., Three inputs, three hidden units, two outputs

Shallow neural networks
● Example network, 1 input, 1 output
● Universal approximation theorem
● More than one output
● More than one input
● General case
● Number of regions
● Terminology
● Universal approximation HOWTO

Number of output regions
● In general, each output consists of multi-dimensional convex polytopes
● With two inputs, and three hidden units, we saw there were seven

polygons for each output:

Polytope -- Wikipedia
In elementary geometry, a
polytope is a geometric object
with flat sides (faces). Polytopes
are the generalization of
three-dimensional polyhedra to
any number of dimensions.
Polytopes may exist in any general
number of dimensions n as an
n-dimensional polytope or
n-polytope.

https://en.wikipedia.org/wiki/Polytope

1 input (1-dimension) with 1
hidden unit creates two

regions (one joint)

2 input (2-dimensions) with 2
hidden units creates four

regions (two lines)

3 inputs (3-dimensions) with 3
hidden units creates eight

regions (three planes)

●

Number of regions:

Binomial coefficients!

Number of output regions

● In general, each output consists of D dimensional convex polytopes

● How many?

Highlighted point = 500 hidden units or 51,001 parameters

Is More Output Regions Good?

● More output regions ~ more flexibility.
● More output regions ~ more freedom to overfit.

○ But not completely arbitrary freedom to overfit.
○ Still linear within each region.
○ Still consistency between adjacent regions.

● Training details will matter

Shallow neural networks
● Example network, 1 input, 1 output
● Universal approximation theorem
● More than one output
● More than one input
● General case
● Number of regions
● Terminology
● Universal approximation HOWTO

Nomenclature

Nomenclature

Other activation functions

Ramachandran, P.,
Zoph, B., & Le, Q. V.
(2017). Searching for
activation functions.
arXiv:1710.05941.

SELU

https://arxiv.org/abs/1710.05941

Other activation functions

Ramachandran, P.,
Zoph, B., & Le, Q. V.
(2017). Searching for
activation functions.
arXiv:1710.05941.

SELU

Sigmoid
function sig[z]
is handy for
limiting output
range since
its range is
[0,1].

https://arxiv.org/abs/1710.05941

Other activation functions

Ramachandran, P.,
Zoph, B., & Le, Q. V.
(2017). Searching for
activation functions.
arXiv:1710.05941.

SELU

But both sig[z]
and tanh[z]
suffer from
low gradients
~0 for large
inputs. They
were the
defaults
before RELU.

https://arxiv.org/abs/1710.05941

Other activation functions

Ramachandran, P.,
Zoph, B., & Le, Q. V.
(2017). Searching for
activation functions.
arXiv:1710.05941.

SELU

None of these are polynomials. Polynomial activations restrict output to be polynomials.

https://arxiv.org/abs/1710.05941

We have built a model that can:
• take an arbitrary number of inputs
• output an arbitrary number of outputs
• model a function of arbitrary complexity between the two

Regression

Shallow neural networks
● Example network, 1 input, 1 output
● Universal approximation theorem
● More than one output
● More than one input
● General case
● Number of regions
● Terminology
● Universal approximation HOWTO

Universal Approximation HOWTO

Universal Approximation HOWTO

Universal Approximation HOWTO

Just bias.

Universal Approximation HOWTO

Add a hidden node that
activates at x=0, setting
slope to match first
region.

Universal Approximation HOWTO

Each new hidden node
activates at the next
region boundary.

Universal Approximation HOWTO

This process works by
extending the number
of regions perfectly
matched one at a time.

Universal Approximation HOWTO

Regions not matched
yet are completely
ignored.

Universal Approximation HOWTO

With 1 input variable, it
is easy to order the
regions, and avoid
impacting the
previously matched
regions.

Universal Approximation HOWTO

With 1 input variable, it
is easy to order the
regions, and avoid
impacting the
previously matched
regions.

Universal Approximation HOWTO

+ 𝜙i a[x - bi]

where bi is the ith
region boundary

Universal Approximation HOWTO

This process of
incrementally matching
a region while avoiding
previous matches gets
much harder with more
dimensions. But it will
be easier with deep
networks.

Universal Approximation HOWTO

BTW we do not
construct universal
approximations like this
in practice. We are
training from points, not
fitting curves. And
training data may
conflict.

Next Week

● Deep Neural Networks
○ More of the same?
○ But different?
○ And better?

Feedback?

